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1. Introduction 

In a recent paper we compared the friction properties of MoS2 lubricant films having varying amounts 
of oxygen substitution within the crystal lattice to those with some degree of oxidation of the 
Mo(IV).' We presented a chemical-mechanical model to describe friction variations of films based 
on the degree of oxygen substitution in the basal plane of the MoS2 crystals. Wahl and Singer have 
proposed that long life in sliding systems is achieved by means of the recirculation of crystalline 
material into the contact area from reservoirs of lubricant (debris).   In this report, we present new 
data on lubricant transfer-film formation and an interpretation of wear life for thrust-bearing tests 
conducted in vacuum and under nitrogen gas purge. '   The test life in nitrogen is almost twenty times 
longer than that in vacuum (<1.3 x 10'5 Pa). We will provide a chemistry-based model of transfer film 
formation, from lubricated raceways to unlubricated balls and retainers, that we believe explains the 
seemingly anomalous results of these bearing tests. This model draws upon aspects of the Wahl- ^ 
Singer transfer processes and provides an alternative to a previous explanation of the lifetime data. 



2. Experimental 

Two types of test were conducted, thrust bearing tests and ultrahigh vacuum (UHV) tribometry. Each 
apparatus has been described previously."'   The thrust-bearing tester was operated under high vac- 
uum conditions, base pressure <1.3 X 10"5 Pa, or with flowing gases at atmospheric pressure (-100 
kPa). Bearings were tested under a 30-pound load, producing a mean Hertz stress of 75 ksi, approxi- 
mately 0.5 GPa. The bearings were operated unidirectionally at 2500 rpm until failure, which was 
determined from a rapid rise in torque of a factor of five to ten. Some bearing tests were stopped 
(interrupted) after a fraction (-20-30%) of life in order to examine the properties of the lubricant 
transfer films. The compositions and relative thicknesses of lubricant films, including the films trans- 
ferred to the balls, were examined in the x-ray photoelectron spectrometer (XPS). 

The UHV tribometer consists of a pin-on-disk apparatus with the capability of conducting x-ray pho- 
toelectron spectroscopy of the pin and/or disk surfaces, upon interruption of the test, while main- 
taining the specimens under UHV conditions. A schematic diagram of this test apparatus is shown in 
Figure 1. The "pins" consist of 3/16" 440C steel balls. The load on the pin was 0.6 N and the 
rotational speed of the 440C-steel disk was 120 rpm, with the diameter of the pin track being 1 cm. 
Tests in this tribometer were also conducted with variable pressures of residual gases in the chamber 
or under flowing gas at atmospheric pressure. 

Lubricant films for bearing tests were prepared in-house (Aerospace - AT films) by rf sputter deposi- 
tion.3 Thrust bearing raceways were coated to a nominal thickness of 1 |im, but balls and retainers 
were not coated. The retainers were of the stamped metal type with no active lubrication. Disks for 
the UHV tribometer were either fully coated (on the entire wear surface), or they were masked so that 
only half of the disk was coated with MoS2 to evaluate the properties of lubricant-transfer films on the 
uncoated pins (balls) or the uncoated portions of the disks.   A new multiple-target deposition facility 
was used to prepare films for the UHV tribometer experiments. A single MoS2 target was used under 
conditions that produce AT-type films with 2 to 3 at % oxygen substitution. The vacuum chamber for 
this facility has a base pressure of -3x10" Pa and a load-lock mechanism for substrate entry and 
removal. As-deposited films had various quantities of substitutional oxygen, but in general the 
amount was not specifically analyzed. For most film batches the degree of oxidation, crystallinity, 
and morphology were determined, but not necessarily on the specimens tested. 

Figure 1. Schematic diagram of UHV test. 



3. Results and Discussion 

Typical torque traces for thrust bearing tests are shown in Figure 2. Lifetimes under nitrogen purge, 
were 3 to 3.5 million cycles, while those under high vacuum were approximately 180,000 cycles, even 
though the latter ran with lower torque, presumably because of the absence of windage effects. The 
trends in measured torque are the same for all tests, with an initial, run-in period of decreasing torque 
and a rather sudden failure preceded by some noise episodes. During the tests, lubricant was trans- 
ferred from the raceways to the balls and then to the retainers. The interrupted tests (after 20 to 30% 
of total life) showed that most (-70-80%) of the film was removed from the wear track of the initially 
coated receways during the early run-in period. The balls and retainers from these early observations 
contained more uniform transfer-film formation with more overall film, especially at the ball-retainer 
interface, for the nitrogen tests than for the vacuum tests. For the interrupted tests XPS results showed 
two-times more MoS2 species on the balls for the nitrogen tests than on those from the vacuum tests. 
Some tests were conducted with an initial run in the N2 environment (50,000 revolutions) followed by 
operation in vacuum. This attempt to produce lubricant transfer films did not result in significantly 
increased operating life over the results for complete operation in vacuum. (Figure 3). 

The transfer films for the N2 tests exhibited a greater sulfur deficiency (Table 1) with some Mo in a 
higher oxidation state than for the vacuum tests, especially for the interrupted tests but also for the 
tests run to failure. Lubricant debris was scattered throughout the entire vacuum chamber after the 
vacuum tests but was confined to the bearing parts after the N2 tests. Figure 3 also shows results for 
tests conducted under He and C02 atmospheres. One of the He tests lasted almost as long as the 
average N2 test, but those under C02 were only slightly better than for the vacuum conditions. The 
degree of sulfur deficiency in the films for the He tests was much like those in the vacuum tests and 
again less than for the tests under N2. Films tested under C02 showed high levels of Mo oxidation 
compared with the other environments. Finally, a set of bearing tests with the chamber filled to 
intermediate pressures of N2 was conducted with the combined results shown in Figure 4. In these 
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Figure 2. Torque trace for test run (a) in vacuum and (b) in dry N2. 
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Figure 3. Wear life results for thrust-bearing tests conducted in different 
environments. 

Table 1. XPS Results for MoS, Films on Balls 
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tests, there is evidence for a threshold pressure at which the bearing life rises dramatically to a plateau 
value. Although more data points are needed to determine the actual shape of this curve, it is 
reminiscent of the shape of an adsorption isotherm, where all surface sites become occupied at a 
particular pressure and the amount of gas adsorbed to the surface reaches a maximum. 

These results suggest that a chemical interaction of a gas in the test atmosphere is the cause of 
enhanced performance. We believe that this chemical influence may be positive or negative, 
depending on whether it induces bonding of the MoS2 to the uncoated surfaces (including wear sur- 
faces) or it causes oxidation of the MoS2. The former condition enhances life, while the latter leads to 
premature failure. In order to investigate the nature of the bonding process(es) of transferred, lubri- 
cant films we conducted a series of UHV, pin-on-disk, tribometry measurements of half coated disks. 
These measurements provide an evaluation of the efficiency of transfer-film formation under different 
environmental conditions (e.g., vacuum versus N2). The results of these tests are shown in Figure 5, 
wherein the coefficient of friction (COF) is plotted as a function of the number of revolutions of the 
disk. The pin travels from coated surface to uncoated surface throughout the course of one disk 
revolution, and the COF oscillates from a low value (-0.03) to a very high value (~1), in a corre- 
sponding fashion. The data of Figure 5 show that depending on the test environment, the COF is 
either reduced rapidly on the uncoated half of the disk, indicating very efficient transfer of lubricant, 
or it remains high and erratic, indicating inefficient transfer. Figure 5a shows that the transfer film 
under one atmosphere of N2 forms within 200 revolutions and that the subsequent COF is quite stable. 
In contrast, Figure 5b shows that under high vacuum the transfer film is not formed until more than 
three times the number of revolutions and that even when the COF is reduced it still exhibits a 
fluctuation more than two-times that of the N2case. 

Our belief was that the increased thrust-bearing life and the more efficient lubricant transfer-film 
formation are related and that they are both due to the effects of an oxygen containing species in the 
test environment of the Nr With this in mind and knowing that the N2 purity level was believed to be 
better than one part per million, we conducted the pin-on-disk test in an atmosphere of ~1 x 10   Pa of 
H20 (equivalent to 1 ppm). It was our expectation that behavior very similar to that for N2 would be 
observed. Figure 6a shows that this was not the case. In fact the behavior under this pressure of water 
vapor was much worse than that under high vacuum. 
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Figure 5. Coefficient of friction (a) vs number of cycles under N2 and (b) for ~1.33 x 10"6 Pa vacuum. 
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Figure 6. COF for ~1.33 x 10'' Pa (a)water vapor and (b) 02. 
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In contrast, Figure 6b shows behavior almost identical to that for N2 when the test environment was 
~1 X 10"' Pa Or Again, the transfer film is formed within approximately 200 to 300 cycles and the 
subsequent COF is low and very stable. We do not have a detailed chemical analysis of the N2 gas 
that we use for our experiments, but an uncalibrated mass-spectral analysis indicates that the water 
content is very low and that there is a measurable amount of oxygen (02), well in excess of lppm. 
This N2 gas is obtained from the "boil-off from a liquid N2 tank. 

Lifetimes for solid-lubricated bearings depend on keeping lubricant in the contact regions of the balls, 
races, and retainers. According to the Wahl-Singer model, lubricant debris can be recaptured by the 
contacting surfaces to provide continuous lubrication. For the tests described here (both bearing and 
UHV tribometer) it is necessary for lubricant to be transferred from an initial, coated surface to one 
uncoated surface (ball or pin) and then to a second uncoated surface (retainer or disk). The efficiency 
of these transfer processes and the uniformity of the transfer films in other sliding wear tests have 
been determined to be a function of the composition of the initially deposited film.   Some degree of 
surface oxygenation or oxidation of the MoS2 coating provides for much more uniform and 
continuous transfer films. The tests reported here show that in a flowing N2 environment or a static 
partial pressure of 02 more transfer of more uniform films occurs than for tests in high vacuum. 

It might be argued that long life in the bearing tests could be achieved by precoating the balls and 
retainers in addition to the receways. Indeed, this procedure would probably increase life to some 
limited extent, but as shown in the interrupted bearing tests, up to 80% of the initial coating is 
removed from the wear track very early in life. Presumably, similar amounts of coating would be 
worn off of precoated balls, and long life would still depend on the recirculation and bonding of the 
lubricant debris to the wear tracks on the receways and balls. The tests in which the bearings were 
run in N2 for 50,000 cycles and then in vacuum, that showed little increase in life, would tend to sup- 
port this argument. Some material should have been transferred during the run-in, but since there was 
no continuous supply of bonding agent to promote adhesion of material to the balls, retainers, or 
worn receways, the bearings failed during the vacuum portion of the run. 



4. Summary and Conclusions 

We submit that the reason that the bearing tests conducted in flowing N2 have such longer lifetimes 
than those done in high vacuum is because the transfer films form more efficiently in the former, and 
these films are continuously reformed by means of recirculation of the debris generated during the 
tests. We also submit that the reason the transfer films form more effectively in N2 is that there is a 
continuous supply of oxygen in the N2 that makes bonding to counter surfaces more effective, proba- 
bly as a result of oxygen bridge bonding between Mo and Fe through oxygen substitution in the 
MoS2. In high vacuum there is insufficient oxygen to collide with the contacting surfaces to provide 
efficient oxygen-substitution-induced bonding of the transferring material. Bearing tests conducted in 
the C02 atmosphere and pin-on-disk tests conducted in 1 x 10   Pa H20 show that oxidation of the 
MoS2 does not provide long bearing life or good lubricant transfer films. Apparently, only conditions 
that promote bonding between the film and the substrate surface lead to longer wear life by enhancing 
the recirculation phenomenon proposed by Wahl and Singer. Additional proof of our hypothesis con- 
cerning the environmental effects on wear life of bearing tests will come from planned operation of 
the bearings in dry 02 at low pressure. 
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